Structural Ramsey theory and topological dynamics II

L. Nguyen Van Thé

Université Aix-Marseille 3

February 2011

L. Nguyen Van Thé (Université Aix-Marseille 3) Ramsey theory and dynamics

February 2011 1 / 13

Reminder from first lecture

- Extremely amenable group G:
 Every continuous action of G on a compact space has a fixed point.
- ▶ Ultrahomogeneous structure 𝔅:
 Every isomorphism between finite substructures of 𝔅 extends to an automorphism of 𝔅.
- ► Fraïssé class *K*:

Countable class of finite structures with hereditarity, amalgamation and joint embedding property.

- ► Some Polish, non locally compact groups *G* are extremely amenable.
- ▶ When G closed subgroup of S_{∞} , then G = Aut(F), F countable ultrahomogeneous structure.
- The class \mathcal{K} of finite substructures of \mathbb{F} is a Fraïssé class.

Part III

Extreme amenability and the Ramsey property

L. Nguyen Van Thé (Université Aix-Marseille 3) Ramsey theory and dynamics

February 2011 3 / 13

Ordered ultrahomogeneous structures

Proposition

Let \mathbb{F} be a countable ultrahomogeneous structure, with $Aut(\mathbb{F})$ extremely amenable. Then there is a linear ordering < on \mathbb{F} such that

 $\operatorname{Aut}(\mathbb{F}) \subset \operatorname{Aut}(\mathbb{F}, <).$

Proof.

Set of binary relations on $\mathbb{F}: 2^{\mathbb{F} \times \mathbb{F}}$, compact. Aut(\mathbb{F}) acts continuously on $2^{\mathbb{F} \times \mathbb{F}}: gR(x, y)$ iff $R(g^{-1}x, g^{-1}y)$. $LO(\mathbb{F}) \subset 2^{\mathbb{F} \times \mathbb{F}}$ closed, Aut(\mathbb{F})-invariant. Any < fixed point is as required.

So those countable ultrahomogeneous classes which have a chance to have extremely amenable automorphism groups are ordered.

The Ramsey property

Definition

Let \mathbb{F} be a countable ultrahomogeneous structure. Say \mathbb{F} has the Ramsey property when for any:

- $A \subset \mathbb{F}$ finite (small structure, to be colored),
- $B \subset \mathbb{F}$ finite (medium structure, to be reconstituted),
- $k \in \mathbb{N}$ (number of colors),

...the following holds:

Whenever copies of A in \mathbb{F} are colored with k colors, there is $\tilde{B} \cong B$ where all copies of B have same color.

Remark In fact, it is a property of $Age(\mathbb{F})$ only.

Extreme amenability and Ramsey property

Theorem (Kechris-Pestov-Todorcevic, 05)

Let ${\mathbb F}$ be an ordered countable ultrahomogeneous structure. TFAE:

- i) $Aut(\mathbb{F})$ is extremely amenable.
- ii) \mathbb{F} has the Ramsey property.

Definition

If $A, B \subset \mathbb{F}$, $\binom{B}{A}$ denotes the set of all substructures of B isomorphic to A (copies of A in B).

Extreme amenability implies Ramsey property

Assume $G := \operatorname{Aut}(\mathbb{F})$ is extremely amenable. Let $k \in \mathbb{N}$, $A, B \subset \mathbb{F}$, finite, $\chi : \binom{\mathbb{F}}{A} \longrightarrow k$. Space of k-colorings of $\binom{\mathbb{F}}{A}$: $k^{\binom{\mathbb{F}}{A}}$, compact. G acts on $k^{\binom{\mathbb{F}}{A}}$ continuously:

$$g \cdot c : \tilde{A} \mapsto c(g^{-1}(\tilde{A})).$$

 $\overline{G \cdot \chi} \subset k^{\binom{\mathbb{F}}{A}}$ compact, *G*-invariant. So there is $c \in \overline{G \cdot \chi}$, *G*-fixed point. Note that *c* is constant. Since $c \in \overline{G \cdot \chi}$,

$$\exists g \in G \ c \upharpoonright {B \choose A} = g \cdot \chi \upharpoonright {B \choose A}.$$

 $\cdot \chi$ constant on ${B \choose A}$, ie g constant on ${g^{-1}(B) \choose A}$.

So g

Ramsey property implies extreme amenability

Assume \mathbb{F} has the Ramsey property. Write $\mathbb{F} = \{x_n : n \in \mathbb{N}\}, A_m = \{x_n : n \leq m\}$ \mathbb{F} is ordered, so

setwise stabilizer of A_m = pointwise stabilizer of A_m .

 $G/Stab(A_m) \cong {\mathbb{F} \choose A_m}$ Recall: Left-invariant metric on $G = \operatorname{Aut}(\mathbb{F})$

 $d(g,h) = 1/2^n$, with $n = \min\{k \in \mathbb{N} : g(k) \neq h(k)\}$.

Elements of $G/Stab(A_m)$ have diameter $< 1/2^m$.

Proposition

Let $k \in \mathbb{N}$, $m \in \mathbb{N}$, $F \subset G$ finite. Let $\overline{f} : G \longrightarrow k$ constant on elements of $G/Stab(A_m)$. Then there is $g \in G$ so that \overline{f} is constant on gF.

Proof.

 \overline{f} induces $f : G/Stab(A_m) \longrightarrow k$, ie $f : \binom{\mathbb{F}}{A_m} \longrightarrow k$. $\{[h] : h \in F\}$ is a finite family of substructures of \mathbb{F} , all isomorphic to A_m . Fix B large enough so that

$$\{[h]:h\in F\}\subset {B \choose A_m}$$

By Ramsey property, find $\tilde{B} \cong B$, f constant on $\begin{pmatrix} B \\ A_m \end{pmatrix}$, with value i < k. Because \mathbb{F} is ordered and ultrahomogeneous: $\exists g \in G \ g''B = \tilde{B}$. Then \bar{f} is constant on gF:

If $h \in F$, then $\overline{f}(gh) = f([gh]) = f(g''[h]) = i$ because $g''[h] \in {B \choose A_m}$.

Proposition

Let p > 0, $f : G \longrightarrow \mathbb{R}^p$ uniformly continuous, bounded, $F \subset G$ finite, $\varepsilon > 0$. Then

$$\exists g \in G \ \forall h, h' \in F \ |f(gh) - f(gh')| < \varepsilon$$

Proof.

As subsets of G, elements of $G/Stab(A_m)$ have diameter $< 1/2^m$. So can find m, $\overline{f} : G \longrightarrow \mathbb{R}^p$ constant on elements of $G/Stab(A_m)$ so that

$$\|f - \overline{f}\|_{\infty} < \varepsilon$$

By previous proposition, find $g \in G$ so that \overline{f} constant on gF. Then f is ε -constant on gF. Proposition

G is extremely amenable.

Proof.

Let G act continuously on K compact.

For p > 0, $f : G \longrightarrow \mathbb{R}^p$ uniformly continuous, bounded, $F \subset G$ finite, $\varepsilon > 0$, set

$$E_{f,arepsilon,\mathsf{F}} = \{x \in X : orall g \in F \| f(x) - f(gx) \| \leq arepsilon \}$$

 $(E_{f,\varepsilon,F})_{f,\varepsilon,F}$ family of closed subsets of K with finite intersection property. Fix

$$x_0 \in \bigcap_{f,\varepsilon,F} E_{f,\varepsilon,F}$$

Then x_0 is fixed by G: If not, find $g_0 \in G$ such that $gx_0 \neq x_0$. Find $f_0 : X \longrightarrow [0, 1]$ uniformly continuous with $f_0(x_0) = 0$, $f_0(g_0x_0) = 1$. Then $x_0 \notin E_{f_0, 1, \{g_0\}}$, a contradiction.

February 2011

The very first example

• Finite linear orders:

Theorem (Ramsey, 30) \mathcal{LO} has the Ramsey property.

Corollary (Pestov, 98) $Aut(\mathbb{Q}, <)$ extremely amenable.

Corollary (Pestov, 98) Homeo₊(\mathbb{R}) (pointwise convergence topology) extremely amenable.

Proof. $\operatorname{Aut}(\mathbb{Q}, <) \hookrightarrow \operatorname{Homeo}_+(\mathbb{R})$ densely. \Box

Example: Metric spaces

• Finite ordered metric spaces with rational distances: $\mathbb{U}_{\mathbb{Q}}^{<} = (\mathbb{U}_{\mathbb{Q}}, <^{\mathbb{U}_{\mathbb{Q}}}).$

Theorem (Nešetřil, 05)

 $\mathcal{M}^<_\mathbb{O}$ has the Ramsey property.

Corollary $\operatorname{Aut}(\mathbb{U}_{\mathbb{Q}}, <^{\mathbb{U}_{\mathbb{Q}}})$ extremely amenable.

Corollary $iso(\mathbb{U})$ extremely amenable.

 $\begin{array}{ll} \mathsf{Proof.} \\ \mathrm{Aut}(\mathbb{U}_{\mathbb{Q}}, <^{\mathbb{U}_{\mathbb{Q}}}) \hookrightarrow \mathrm{iso}(\mathbb{U}) \text{ densely.} & \Box \end{array}$

L. Nguyen Van Thé (Université Aix-Marseille 3)